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Abstract

A computational study of the pseudosteady!state two!dimensional natural convection within spherical containers
partially _lled with a porous medium is presented[ The computations are based on an iterative\ _nite!volume numerical
procedure using primitive dependent variables\ whereby the time!dependent continuity\ momentum and energy equations
in the spherical coordinate system are solved within the composite system[ The natural convection e}ect is modeled via
the Boussinesq approximation\ whereas the Darcy Law is utilized to treat the porous medium[ For a reference case\
~ow and temperature _eld details during the transient evolution to the pseudosteady!state are presented[ It is shown
that the dominant transport mechanism at the early stages is due to heat conduction and natural convection plays no
role[ A parametric study was performed with the values of the Rayleigh number "Ra#\ Darcy number "Da# and the
thermal conductivity ratio varying one at a time[ The dependence of the ~ow and thermal _elds on these parameters
was elucidated[ For low Ra and Da numbers\ the ~ow _eld is restricted within the central ~uid core[ Only for high Ra and
Da numbers\ one can observe comparable ~uid motion in both the porous medium and central ~uid core regions[ The
local Nusselt number on the surface and interface temperature exhibit nearly uniform variations for low Ra and Da
numbers\ signifying little deviation from the limiting pure conduction case[ For high Ra and Da numbers\ marked heat
transfer is observed on the bottom of the sphere[ The interface temperature is also seen to deviate from uniform variation
for high Ra and Da numbers[ Only the intensity of the recirculating ~ow in the central ~uid core region was seen to depend
on the thermal conductivity ratio[ The thermal conductivity ratio modi_es the time scale of the thermal transport and only
the relative magnitudes of the monitored quantities are a}ected[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

cp speci_c heat at constant pressure ðJ kg−0 K−0Ł
` gravitational acceleration ðm s−1Ł
k thermal conductivity ðW m−0 K−0Ł
K permeability ðm1Ł
Num mean Nusselt number\ equation "05#
p pressure ðPaŁ
p9 static pressure ðPaŁ
r radial coordinate within the sphere ðmŁ
R radius of the sphere ðmŁ
t time ðsŁ
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t�pss dimensionless time needed to reach the pseudo!
steady!state condition
T temperature ðKŁ
Tm mean or bulk temperature of the ~uid ðKŁ
T9 initial temperature of the ~uid ðKŁ
Vr radial component of the ~uid velocity ðm s−0Ł
Vu polar component of the ~uid velocity ðm s−0Ł[

Greek symbols
b coe.cient of thermal expansion ðK−0Ł
u polar angle in the sphere
n kinematic viscosity ðm1 s−0Ł
r density ðkg m−2Ł[

Subscripts
e e}ective quantity for the ~uid!saturated porous med!
ium
r radial component
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s related to the solid matrix
u polar component[

0[ Introduction

Spherical shapes and containers are widely used and:or
encountered in industrial applications and naturally!
occurring phenomena[ Accordingly\ greater under!
standing of the ~uid ~ow and heat transfer within spheres
should prove extremely useful in a variety of disciplines[
These include spray forming\ fuel droplet vaporization\
~uid storage and mixing tank modeling\ containerless
processing and environmental transport applications[
There are also numerous applications such as geothermal
systems\ thermal insulations and speci_c materials pro!
cessing techniques such as spray forming and powder
metallurgy where partially or fully!saturated composite
~uid!porous media formations are encountered[

Going through the literature\ it is apparent that very
little attention has been given to natural convection inside
spherical containers[ Pustovoit ð0Ł proposed an approxi!
mate method to solve the equations governing slowly!
varying axisymmetric natural convection inside a spheri!
cal container by expanding the dependent variables in
terms of the Grashof number series[ The resulting linear
equations were solved by successive approximations[
With the initial liquid temperature being higher than the
constant surface temperature\ the liquid which was being
cooled sank near the surface\ whereas the hotter liquid
rose vertically in the middle of the sphere[ It was observed
that the liquid was cooled least in a region located at
about one third of the radius above the center\ where
molecular conduction was dominant[ Whitley and
Vachon ð1Ł published their numerical solutions of tran!
sient axisymmetric laminar natural convection heat
transfer inside spheres using the Boussinesq approxi!
mation[ A _nite!di}erence!based vorticity!stream func!
tion numerical procedure was employed[ The ~uid which
was initially at a constant temperature was suddenly sub!
jected to a steep rise in the wall temperature[ In this
con_guration\ the ~uid being heated next the surface rose
upward\ replacing the colder ~uid which sank vertically
to the bottom of the sphere[ Chow and Akins ð2Ł pre!
sented experimental results of the pseudosteady!state
natural convection inside spheres[ The distinct feature of
the pseudosteady!state treatment is that the driving force
for convection is kept constant\ i[e[ the temperature out!
side the sphere was increased steadily so that the tem!
perature di}erence between the outside and the center of
the sphere remained constant[ During the ~ow vis!
ualization phase of the study\ the motion of hollow glass
spheres were monitored and the location of the eye of the
recirculation pattern was quanti_ed[ They also provided
an empirical correlation for the mean Nusselt number in
the laminar regime "Rayleigh number below 096#[ Hut!

chins and Marschall ð3Ł presented computational results
for pseudosteady!state\ two!dimensional\ natural con!
vection inside spheres[ Using a _nite!di}erence!based
vorticity!stream function numerical procedure similar to
Whitley and Vachon ð1Ł\ they simulated the ~ow and
temperature _elds in the laminar regime "Rayleigh num!
ber between 094Ð097# and two di}erent Prandtl numbers
of 9[6 and 7[ The general trends of their computed eye of
the recirculation and mean Nusselt number variation
were similar to the _ndings of Chow and Akins ð2Ł[ The
heat transfer data were found to be independent of the
Prandtl number and a mean Nusselt number correlation
applicable for the Rayleigh number range of 094Ð097 was
proposed[ Shen et al[ ð4Ł performed a set of pseudosteady!
state computations of natural convection within spherical
containers\ very similar to the computational study of
Hutchins and Marschall ð3Ł\ with the main distinction
being the use of a _nite!volume primitive!variables!based
methodology[ In addition to comparing the results to the
previously!published data of Hutchins and Marschall ð3Ł\
and experimental _ndings of Chow and Akins ð2Ł\ the
surface heat transfer characteristics along with the details
of the transient evolution to the pseudosteady!state con!
ditions were elucidated[ Nguyen et al[ ð5Ł recently ana!
lyzed transient natural convection in a spherical con!
tainer composite system which was partially _lled with a
porous medium[ Using a hybrid spectral method\ they
numerically simulated the unsteady ~uid ~ow and heat
transfer behavior within spherical containers[ They con!
cluded that the heat transfer results were not sensitive
to the variation of the Prandtl number for the range
considered "9[4Ð09#[ It was established that the overall
heat transfer rate was primarily controlled by the trans!
port characteristics in the porous medium and the ther!
mal conductivity ratio[

Partly motivated by the recent paper of Nguyen et al[
ð5Ł and in order to extend the previous work of the
authors ð4Ł\ the present study was undertaken to elucidate
the pseudosteady!state form of natural convection within
spherical containers partially _lled with a porous
medium[ Such an investigation has not been reported
to date[ The results can have immediate application in
speci_c problems such as transport of geological for!
mations associated with nuclear waste repositories ð5Ł\
modeling of geothermal systems and phase change within
droplets[

1[ Mathematical formulation

Consider a spherical container with radius of R\ which
is partially _lled with a porous medium extending from
r � rf to r � R[ The container is completely _lled with a
~uid\ thus the inner core "r ³ rf# is void of the porous
material[ Given the following assumptions] "0# Being
symmetric with respect to the azimuthal direction f\ the
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dependent variables are functions of the radial position
"r# and the polar angle "u#[ "1# The ~uid is viscous and
Newtonian[ The ~uid properties are constant except for
the variation of density which is modeled using the
Boussinesq approximation and viscous heating e}ects are
ignored[ "2# The porous medium is homogeneous and
isotropic[ The ~uid and the solid matrix within the porous
medium are in local thermal equilibrium[

The appropriate volume!averaged transport equations
within the porous medium in the spherical coordinate
system can be developed[ The details are not provided
here\ but can be found elsewhere\ i[e[ Vafai and Tien ð6Ł[
Two sets of governing equations are needed to describe
the present composite system which consists of a pure
~uid inner core and the porous medium outer shell[ In
order to avoid repetition\ a general equation for both
regions is written followed by a description of the main
distinctions[ The continuity equation is]
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The momentum equation in the radial direction "r# is]
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Finally\ the energy equation is]
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In the foregoing equations\ distinction must be made
between the ~uid velocity within the pure ~uid and within
the porous medium[ Table 0 is provided in order to dis!
tinguish the meaning of the various variables within the
two zones[ It should be noted that the Darcy Law is used
to treat the porous material\ through the introduction
of friction terms "SDr and SDu# in the two momentum

Table 0
Representation of the variables within di}erent regions

Fluid Porous
region medium

Vr\ Vu Fluid Volume!averaged
and T variables quantities

SDr 9 −
m

K
Vr

SDu 9 −
m

K
Vu

"rcp#? rcp rece

k? k ke

equations[ The quantity K is the permeability of the
porous medium and is given by

K �
ml2

C"0−l#1
"5#

where l is the porosity of the medium[ Within the ~uid\
the porosity has the value of 0\ whereas within the porous
medium the porosity is less than 0[ The quantity C is the
porosity constant and its value varied between 2×094

and 4[1×096 during the computations[
Introducing the following dimensionless variables with

use of the superscript "�#]
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where a is the thermal di}usivity\ the dimensionless gov!
erning equations in vector form are obtained]
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where eg is the unit vector in the direction of the gravi!
tational acceleration and]
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are the Prandtl\ Rayleigh and Darcy numbers\ respect!
ively[ The dimensionless energy equation is]
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where Fc and Fk are de_ned as]
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Within the ~uid region\ the Darcy number is equal to
in_nity\ Fc � Fk � 0\ and the governing equations above
represent the well established formulation for classic
natural convection[

1[0[ Boundary and initial conditions

The ~uid ~ow boundary condition on the solid surface
is the no!slip condition\ that is]

V�r � V�u � 9 at r� � 0 for t� × 9 "02#

To ensure the maintenance of the pseudosteady!state
condition\ the temperature on the surface "Tw# was
allowed to vary with time so that it was always above the
temperature of the center of the sphere "Tc# by a constant
value[ The boundary conditions at the physical symmetry
axis of the sphere are]

V�r �
1V�u
1u

�
1U
1u

� 9 at u � 9\ p "03#

The problem associated with the variables being multi!
valued at the center is removed by introducing a very
small\ but _nite\ interior surface[ The validity of this
technique was discussed by de Vahl Davis ð7Ł[ The axial
symmetric boundary condition is applied at the interior
surface[ On all the boundaries of the computational
domain\ the gradient boundary conditions were dis!
cretized by using a three!point formula with second order
of accuracy[ At the beginning of the computations
"t� � 9#\ the ~uid velocity was set to zero and the ~uid
temperature was _xed at a constant value "T9#\ thus]

V�r � V�u � 9 U � 9 for 9 ³ r� ³ 0 at t� � 9

"04#

1[1[ Computational details

The numerical solution of the governing transport
equations was obtained following the SIMPLE pro!
cedure of Patankar ð8Ł[ A 20×30 grid system was chosen
following a systematic parametric study with other grid
densities "10×20 and 30×40#[ The _nal choice of the
grid density was based on comparison among the pre!
dictions of the transient velocity and temperature at three
polar angle locations[ In addition\ a similar grid density
was already proven to be very adequate in matching the
previous experimental ð2Ł and computational ð3Ł studies[
Thirty!one uniform grids were laid in the u direction from
9 to p in 5> increments[ A hybrid of uniform and non!
uniform grids were laid in the radial direction for the
intervals r� � 9Ð9[2\ 9[2Ð9[4\ 9[4Ð9[64 and 9[64Ð0\ in
order to capture the pertinent details in the ~uid core\
~uid!porous medium interface and near the solid surface[
The schematic diagram of the computational grid system

is shown in Fig[ 0[ The gravitational acceleration vector
points vertically downward along the u � p line[ The
temporal derivatives were treated using an implicit for!
mulation[ The time step used in the computations was
maintained at 9[0 s[ The line!by!line method was used to
obtain converged solutions iteratively\ whereas relax!
ation factors of 9[0\ 9[0\ 9[04 and 9[04 were used for Vr\
Vu\ P and T\ respectively[ At every time step\ the iterations
were terminated when the sum of the normalized absolute
residuals for each variable was less than 09−5[ In addition\
the relative change of all the variables at every grid point
were assured to be lower than 09−4 upon convergence[
At each time step\ the number of iterations needed to
achieve convergence varied between 199 and 1999[ The
CPU time per iteration was 0[4×09−0 s\ which is about
an order of magnitude greater than those for pure ~uid
computations ð4Ł[ The computations were performed on
the CRAY C!89 supercomputer of the Alabama Super!

Fig[ 0[ Schematic diagram of the computational grid system[
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computer Authority\ which is located in Huntsville\
Alabama[

2[ Results and discussion

In the beginning\ a brief overview of the behavior of
pseudosteady!state natural convection for pure ~uids
within spherical containers is given[ These results are
similar to those of ð4Ł and are given in order to establish a
reference state for the limiting case of composite systems[

2[0[ Pure ~uid systems without porous medium

Even though the pseudosteady!state results presented
in this paper for composite systems and earlier for pure
~uid systems ð4Ł are obtained by performing transient
calculations\ the time!dependent evolution of the velocity
and temperature _elds leading to the pseudosteady!state
condition should not be ignored[ Early in the process\
the ~uid responds to the step change in the wall tem!
perature by forming concentric temperature contours\
independent of the polar angle[ This suggests that during
the early periods\ the dominant transport phenomena is
due to heat conduction and natural convection plays a
small role[ As time progresses\ natural convection proves
dominant and the concentric temperature contours
become skewed\ the degree of which depends on the mag!
nitude of the Rayleigh number[ After a time period\ the
system will attain the pseudosteady!state condition[ In
our computations\ similar to those of Hutchins and Mar!
schall ð3Ł\ the attainment of the pseudosteady!state con!
dition was decided by monitoring the value of the mean
Nusselt number "Num#\ de_ned as]

Num �
0
1 g

p

9 $
1T�
1r� %r��0

sin u du with T� �
T−T9

Tw−Tm

"05#

The pseudosteady!state condition was established once
the relative change in the value of the mean Nusselt
number over a time step was less than 09−5[ The dimen!
sionless time needed to achieve the pseudosteady!state
condition "t�pss# ranged between 9[22 "Ra � 094# and 9[93
"Ra � 096#[ The composite diagrams of the streamline
and temperature _eld contours under pseudosteady!state
condition for the case of Pr � 3[05 and the Rayleigh
numbers of 094\ 095 and 096 are presented in Fig[ 1aÐc[
The streamlines are shown on the left half of the sphere\
whereas the respective temperature _eld contours are
drawn on the right half of the sphere[ For the Rayleigh
number of 094 "Fig[ 1a#\ one can see that the temperature
contours are skewed from a concentric ring distribution
suggesting that natural convection e}ects are important[
As buoyancy!induced convection becomes more domi!
nant\ the temperature contour deviations from concentric

ring patterns become more marked and the temperature
gradients become more pronounced on the bottom of the
sphere[ One can clearly observe that the ~uid being heated
adjacent to the surface rises\ replacing the colder ~uid
which sinks downward along the center of the sphere[
For the high Rayleigh number ~ows "Fig[ 1b and c#\ the
crescent!shaped pattern of recirculating ~ow was found
to be in good agreement with the experimental results
of Chow and Akins ð2Ł[ The location of the eye of the
recirculation pattern is observed to be dependent on the
Rayleigh number and moves toward the surface as natu!
ral convection is intensi_ed[ This is accompanied by
appearance of strong shearing of the velocity _eld
between the surface and the eye of the recirculation
pattern[

2[1[ Composite ~uidÐporous medium systems

For the present set of computations the porous me!
dium extends from r�� rf:R�9[4 to 0 similar to the study
of Nguyen et al[ ð5Ł[ In light of the previous _ndings ð3Ð
5Ł\ who have demonstrated the weak dependence of the
results on the Prandtl number\ parametric studies were
performed only for a Prandtl number of 3[05 "water at
204 K#[ Given the ~uid with known properties\ a para!
metric study of the remaining dimensionless parameters
"Da\ Ra and Fk# was performed[ A reference case with
typical assigned dimensionless parameters was selected
which is summarized in the second column of Table 1[
The range of variations of Da\ Ra and Fk are outlined in
the third column of Table 1[ The chosen range of vari!
ation of the Rayleigh number "094Ð097# is in line with
earlier studies ð2\ 4Ł[ Choice of the variation ranges for
Da and Fk is consistent with the study of Nguyen et al[
ð5Ł[ The dimensionless times needed to reach the pseudo!
steady!state condition "t�pss# varied between 9[905 and
9[076 "summarized in the fourth column of Table 1#[

2[1[0[ Transient ~uid ~ow results for the reference case
The time!dependent evolution of the velocity vectors

and streamlines leading to the pseudosteady!state con!
dition for the reference case is illustrated in Fig[ 2aÐd at
di}erent time instants[ In these _gures\ the solid inner
circle is the position of the porous medium interface
located at r� � 9[4[ The dimensionless time instances dis!
cussed in Fig[ 2aÐd correspond to "a# 9[9937 "b# 9[913
"c# 9[923 and "d# 9[966[ Early in the process
"t� � 9[9937#\ the ~uid responds to the sudden step
change in the surface temperature by rising along the
surface[ The ~uid velocity near the surface is high due to
the steep temperature gradient there[ The heated ~uid
which rose to the top will then fall along the symmetry
axis from the porous medium into the central ~uid core[
At this early time instant "t� � 9[9937#\ the ~uid velocity
magnitudes within the central ~uid core appear to be
comparable to those observed near the surface\ partly
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Fig[ 1aÐc[ Pseudosteady!state streamline and temperature _eld contours for pure ~uid systems for the Rayleigh numbers of "a# 094\
"b# 095 and "c# 096[

Table 1
Variation of the dimensionless parameters

Reference
case Range of
"t�pss � 9[961# variation t�pss×091

Da 09−4 09−2\ 09−3\ 09−5\ 09−6 07[6\ 06[5\ 4[7\ 4[0
Ra 095 094\ 096\ 097 6[0\ 3[5\ 0[5
Fk 9[6 0\ 1\ 4 7[0\ 8[1\ 8[5
l 9[64 unchanged
Fc 0 unchanged

due to natural convection and partly due to the fact that
in spherical geometry the available cross!sectional areas
decrease as one moves toward the center[ The ~uid within
the porous medium which is set in motion due to the
buoyancy e}ect will encounter resistance to its motion
proportional to its speed[ With the rise in this resistance\
the ~uid will prefer to avoid travel through the porous
medium and establishes itself within the central ~uid core
"r� ³ 9[4#[ Note that after the pseudosteady!state
condition is reached for the reference case
"t� � 9[966 × t�pss � 9[961#\ the bulk of the ~uid has
migrated inward and the large recirculatory eddy of the
early period has shrunk in size to occupy the space within
the central ~uid core[

2[1[1[ Pseudosteady!state ~uid ~ow and heat transfer
results

The composite diagrams of the streamlines and tem!
perature _eld contours for the Rayleigh numbers of 094\
095\ 096 and 097 are presented in Fig[ 3aÐd\ where the
Darcy number and the thermal conductivity ratio are
kept at the values of the reference case[ For the lowest

Fig[ 2aÐd[ Transient evolution of the velocity vectors and stream!
line contours for the reference case "Ra � 095\ Da � 09−4 and
Fk � 9[6# at dimensionless time instants "a# 9[9937 "b# 9[913 "c#
9[923 and "d# 9[966[

value of the Rayleigh number "Ra � 094\ Fig[ 3a# studied\
nearly perfect concentric temperature contours are
observed\ indicating one!dimensional heat di}usion[ For
the Rayleigh number of 095 "the reference case#\ one can
see that the temperature contours are skewed to some
extent from a concentric ring distribution[ For both Ray!
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Fig[ 3aÐd[ Pseudosteady!state streamline and temperature _eld
contours for composite systems\ corresponding to the Rayleigh
numbers of "a# 094 "b# 095 "c# 096 and "d# 097 "Da � 09−4 and
Fk � 9[6#[

leigh numbers of 094 and 095\ the streamlines are con!
centrated within the central ~uid core[ This signi_es that
the ~uid having encountered*on its course of attaining
the pseudosteady!state condition*the resistance o}ered
within the porous medium has established itself within
the central ~uid core[ As buoyancy!induced convection
becomes more dominant\ the temperature contour devi!
ations from concentric ring patterns become more
marked and the temperature gradients become more pro!
nounced on the bottom of the sphere similar to the _nd!
ings for pure ~uid systems ð4Ł[ For the high Rayleigh
number cases presented in Fig[ 3c\ d\ the temperature
_eld within the central ~uid core is made up of isothermal
horizontal layers[ This is brought about by the domi!
nance of the buoyancy force which can negotiate its way
through the porous medium and therefore\ penetrates
further into the porous medium region as the Rayleigh
number increases[ The location of the eye of the recir!
culation pattern is observed to be dependent on the Ray!
leigh number and moves toward the surface and into the
porous medium as natural convection is intensi_ed[ This
phenomenon is further clari_ed in Fig[ 4a\ where the
variations of the dimensionless polar velocity component
"V�u# along the horizontal plane going through the center
of the sphere are given for the Rayleigh numbers of 094\
095 and 096[ For the Rayleigh numbers of 094 and 095\

Fig[ 4aÐc[ Pseudosteady!state variations of "a# velocity com!
ponent "V�u# along the horizontal plane "u � p:1# "b# the local
surface Nusselt number and "c# the interface temperature\ for
the Rayleigh numbers of 094\ 095 and 096 "Da � 09−4 and
Fk � 9[6#[

the ~uid within the porous medium "r� × 9[4# is slow!
moving due to the resistance in this zone and the weak!
ness of the natural convection force to negotiate it[ On
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the other hand\ the ~uid velocity within the central ~uid
core "r� ³ 9[4# is marked in comparison\ in addition to
exhibiting the recirculating nature of the ~ow _eld in
this zone[ For the high Rayleigh number of 096\ the
strengthened buoyancy force resulting from the steep
temperature gradients within the porous medium is
capable of negotiating the resistance force and the ~uid
motion is intensi_ed within the porous medium[ At the
same time\ the ~uid velocity within the central ~uid core
has diminished[

The variations of the local Nusselt number

0Nuu �
1T�
1r� br��01 "06#

on the surface of the sphere for the Rayleigh numbers of
094\ 095 and 096 are given in Fig[ 4b[ For the Rayleigh
numbers of 094 and 095\ the heat transfer rates appear to
be very weakly dependent on the position on the surface[
On the other hand\ for the high Rayleigh number of 096\
gravity!induced ~uid motion greatly enhances the heat
transfer rate near the bottom of the sphere\ where steep
temperature gradients are observed[ The in~uence of the
natural convection in modifying the temperature _eld
is illustrated in Fig[ 4c\ where the pseudosteady!state
interface temperature at r� � 9[4 is presented as a func!
tion of the polar angle for the Rayleigh numbers of 094\
095 and 096[ The case of the low Rayleigh number "094#
shows very little deviation from the limiting case of pure
heat conduction[ As natural convection becomes domi!
nant\ the interface temperature becomes more skewed[

The variations of the dimensionless polar velocity com!
ponent along the horizontal plane going through the
center of the sphere are given for the Darcy numbers of
09−3\ 09−4\ 09−5 and 09−6 in Fig[ 5a[ For the low Darcy
numbers studied\ the ~ow _eld is mainly concentrated
within the central ~uid core[ Only for the case of high
Darcy number of 09−3\ one can observe comparable ~uid
motion in both the porous medium and central ~uid core
regions[ The variations of the local Nusselt number on
the surface of the sphere for the Darcy numbers of 09−3\
09−4\ 09−5 and 09−6 are presented in Fig[ 5b[ As expected\
the cases corresponding to the low Darcy numbers exhibit
nearly uniform heat transfer rates on the surface of the
sphere[ For the high Darcy number of 09−3\ noticeable
heat transfer is observed on the bottom of the sphere due
to the steep temperature gradients there[ The pseudo!
steady!state interface temperature is presented as a func!
tion of the polar angle for the Darcy numbers of 09−3\
09−4\ 09−5 and 09−6 in Fig[ 5c[ The extent of deviation
from uniform variation is very marked for the high Darcy
number case which accommodates the marked deviation
from the concentric temperature contour pattern[

The variations of the dimensionless polar velocity com!
ponent along the horizontal plane going through the
center of the sphere are given for the thermal conductivity
ratios of 9[6\ 0\ 1 and 4 in Fig[ 6a[ For all these cases with

Fig[ 5aÐc[ Pseudosteady!state variations of "a# velocity com!
ponent "V�u# along the horizontal plane "u � p:1# "b# the local
surface Nusselt number and "c# the interface temperature\ for
the Darcy numbers of 09−3\ 09−4\ 09−5 and 09−6 "Ra � 095 and
Fk � 9[6#[
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Fig[ 6aÐc[ Pseudosteady!state variations of "a# velocity com!
ponent "V�u# along the horizontal plane "u � p:1# "b# the local
surface Nusselt number and "c# the interface temperature\ for
the thermal conductivity ratios of 9[6\ 0\ 1 and 4 "Ra � 095 and
Da � 09−4#[

Ra � 095 and Da � 09−4\ the ~uid motion is restricted
to the central ~uid core and only the intensity of the
recirculating ~ow is seen to depend on the thermal con!
ductivity ratio[ This dependence is brought about by the
buoyancy term in the momentum equations\ which in
turn is coupled to the energy equation which includes the
thermal conductivity ratio[ The variations of the local
Nusselt number on the surface of the sphere for the
thermal conductivity ratios of 9[6\ 0\ 1 and 4 are given in
Fig[ 6b[ The local Nusselt number variations for di}erent
thermal conductivity ratios are similar to each other and
only the relative magnitudes are di}erent[ This should
not be surprising since the thermal conductivity ratio
only appears on the advection side of the energy equation
and being a constant just modi_es the time scale of the
thermal transport[ A similar behavior is observed for the
pseudosteady!state interface temperature which is pre!
sented in Fig[ 6c as a function of the polar angle for the
thermal conductivity ratios of 9[6\ 0\ 1 and 4[ For a given
polar angle\ as the thermal conductivity ratio is increased\
the dimensionless interface temperature rises[ In essence\
as the thermal conductivity of the porous medium
increases\ resistance to thermal transport is lowered and
higher interface temperatures are observed[

3[ Conclusions

The following conclusions are drawn for the pseudo!
steady!state natural convection within spherical con!
tainers partially _lled with a porous medium]

"0# During the transient period before attaining the
pseudosteady!state condition\ the heated ~uid within
the porousmediumadjacent to the surface rises replac!
ing the colder ~uid which sinks from the porous med!
ium into the central ~uid core[ With the rise in the
resistance o}ered to the ~uid in the porous medium\
the ~uid establishes itself within the central ~uid core[

"1# Under the pseudosteady!state condition\ nearly per!
fect concentric temperature contours are observed
for low Ra\ indicating one!dimensional heat
di}usion[ As buoyancy!induced convection becomes
dominant\ the temperature contours| deviations from
concentric ring patterns become more marked and
the temperature gradients become more pronounced
on the bottom of the sphere[ For low Ra\ the ~uid
motion within the porous medium is slow due to the
resistance in this zone[ For high Ra\ the strengthened
buoyancy force is capable of negotiating the resist!
ance force and the ~uid motion is intensi_ed within
the porous medium[ The surface heat transfer rate
and interface temperature appear to be weakly
dependent on the position for low Ra\ signifying little
deviation from the limiting pure conduction case[
For high Ra\ gravity!induced ~uid motion greatly
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enhances the heat transfer rate near the bottom of
the sphere[ In addition\ the interface temperature
becomes more skewed[

"2# For low Da\ the ~ow _eld is restricted within the
central ~uid core[ Only for high Da\ one can observe
comparable ~uid motion in both the porous medium
and central ~uid core regions[ The local Nusselt num!
ber on the surface and interface temperature exhibit
nearly uniform variations for low Da[ For high Da\
marked heat transfer is observed on the bottom of
the sphere[ The interface temperature is also seen to
deviate from uniform variation for high Da[

"3# The intensity of the recirculating ~ow in the central
~uid core region was seen to depend on the thermal
conductivity ratio[ The thermal conductivity ratio
modi_es the time scale of the thermal transport and
only the relative magnitudes of the monitored quan!
tities are a}ected[
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